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VOur study of the Interactlon of millimeter wave fields with biological systems
* has concentrated on Davydov's muxeel of soliton formation in alpha-helices. A

qualitative understanding has been obtained for the oscillatory modes of proteins in
the millimeter and submillimeter regions of the electromagnetic spectrum.
Specifically:

o " Four separate groups of frequencies are found to exist In short alpha-
helices, ranging from 200 gigahertz to 6 terahertz.

o In long alpha-helices, soliton trapping is predicted for multiquanta
excitation at zero temperature, while the existence of solitons at room
temperature is called into question.

0 A molecular orbital calculation of the exciton-phonon coupling constant In
the formamide dimer suggests that the value of this critical constant

still needs to be determined.

The results point up the need for further molecular orbital calculations and
experimental verification in order to understand the interaction of millimeter
waves with biological systems.
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FINAL REPORT

A STUDY OF THE INTERACTION OF MILLIIETER WAVE FIELDS WITH BIOLOGICAL SYSTEMS

I. INTRODUCTION

Recent experimental and theoretical work indicates that some biological systems
exhibit sensitivities to electromagnetic radiation In the millimeter and
submillimeter wavelengths. These fields, even at very low intensities, have been
reported to produce profound and marked alterations in a variety of organisms.
Specific changes include enhancement and suppression of growth rates in iaromyte
,erevijja (1,2), modification of genetic materials in Drsohi (3), and
retardation of free radical reaction rates in Rhodopseudomonas Sphaeroides (4).

In industrial or military environments a significant number of personnel are
exposed to electromagnetic fields comprised of two or more frequencies. The need to
account for the effects of compound fields places a special burden on biological
theory. Research with simple sinusoidal fields indicates that the mechanisms are
nonlinear, that both amplitude and frequency are significant In accounting for
biological effects. Granting that both amplitude and frequency windows are present
for simple sinusoidal fields, the possibilities for compound windows in
superpositions of two or more sinusoidal fields Increases the number of possible
interactions beyond what is reasonable for case-by-case testing. Responses to the
extremely low frequency (ELF) range (0.1 to 20000 Hz) and the microwave to
submillimeter range (300 MIz to 100 GHz) have particular interest because of the
challenge to current theories of interactions between electromagnetic radiation ane
living tissue.

It is necessary to address the issues from the perspective of the physical
sciences in order to establish which biological processes are relevant to the EMF
sensitivities of living systems. Adey (5) has recently proposed that the cell
membrane is the most likely site of interaction for the electromagnetic field.
Adey's model of transmembrane coupling between extracellular fields and
intracellular responses leaves unspecified several requirements for an amplifying
mechanism between Initial cell surface events and resulting enzymatic responses.
The first requirement Is for an amplification of the weak extracellular
electromagnetic fields sufficiently to perturb binding events at the cell surface.
The second is for a means to pass a signal through the barrier presented by the cell
membrane. The third Is for a source of energy to make up the difference between
molecular binding energies available at the cell surface and energies released by
subsequent intracellular events.

During the past year we have investigated theoretical mechanisms for energy
transfer between ambient fields and Ions or molecules at the cell surface to
proteins In the interior of the cell. Although current research is proceeding
toward an unambiguous identification of cell membrane systems Involved in the
transduction of weak electrical fields (see Adey, (6)) data on the specific
proteins involved is presently unavailable. Knowledge of protein structure is
essential to a study of protein dynamics; In most cases the analytical work has not
yet provided sequences of amino acid residues and is far from yielding the detailedi. picture of protein structure necessary for a treatment of the molecular dynamics.
For this reason we have focussed our research on a structural feature common to all
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folded or helical proteins, the amide-I hydrogen bond (-C=O - H-N-C=). The dynamics
of this system are complex, due to electron delocalization on the -C-N-CO portion
of the protein backbone and the nonlinear effective potential at the proton. Both
phonon spectra and lines in the amide sequence of acetanilide exhibit a complex
pattern of spectral shifts at low temperatures (Johnston, (7)). The pattern of
these shifts indicates the presence of coupling between proton vibrations, acoustic
phonons and excitations of the CO and C-N bonds. At the same time the evidence
indicates that the effective potential energy of the proton is a double well. The
classical or semiclassical dynamics of such nonlinear systems are known to be very
sensitive to driving fields at particular frequencies. Because hydrogen bonding in
crystalline acetanilide is a good qualitative model for hydrogen bonding in
proteins, we should expect to see spectral features in substances composed of alpha-
helices similar to those found In acetanilide crystals. This observation would have
definite Implications for the dynamics of protein molecules. In particular, many of
the normal modes of a protein molecule are determined by parameters arising from thehydrogen bonding. If the (-C=O.H-N-C=) system shows high sensitivity to driving

electromagnetic fields in the millimeter wave range, this should be reflected in the
dynamics of the whole molecule. As an initial step, we have chosen to investigate a
simplified model proposed by Davydov (8) of interactions between amide-I excitations
and acoustic phonons in the protein alpha-helix.

A major thesis investigated is that the principal response of biological
macromolecules to millimeter wave radiation involves the excitation of acoustic
phonons or low frequency vibrations with characteristic frequencies less than 6000
GHz (200 cm-1.) The biological importance of defining the properties of these modes
and their interaction with electromagnetic radiation is stressed by indications of
their role in the activity of enzymatic proteins (Peticolas, (9), Northrup, ,a
(10)) and in directing the paths of hydrogen exchange in proteins (Sheridan, a.
(11)). As a result, the understanding of the low frequency dynamics of proteins anC
polypeptides is the subject of much current experimental (Peticolas, (9)) and
theoretical research (Northrup, et al, (10) Sheridan, et al, (11), McCammon and
Karplus, (12) Pain, (13), Go, et al, (14), Brooks and Karplus, (15), Davydov,
(16,ab), Hyman, et a, (17), Scott, (18), Lomdahl, (19)). The majority of the
theoretical investigations have concentrated on analyzing the low frequency dynamics
in terms of such weak interactions as hydrogen bonding, torsional twisting, and van
der Waal's forces. Only a few of these studies included a nonlinear coupling
between the low energy acoustic phonons and the amide-I vibrational excitons.

Part II of this report covers our investigation of the dynamics of the Davydov
model in both short and long chain alpha helices while Part III summarizes results
of molecular orbital calculations of the exciton-phonon coupling in the formamide
dimer. Our investigation of these two aspects of the Davydov model has provided a
qualitative understanding of oscillatory modes of proteins which correspond to the
millimeter and submillimeter regions of the electromagnetic spectrum.

II. INVESTIGATION OF THE DYNAMICS OF THE DAVYDOV MODEL

A. BACKGROUND

One of the central issues of btoenergetics Is how energy arising from chemical
transformations Is transferred within enzymes and other protein molecules (Green,
(20,21)). The amide-I vibration (C-O stretch) has been proposed as a possible
vehicle for energy propagation in biological systems (Green, (21)). A linearized
model of amide-I excitation predicts decay to thermal vibrations within a few
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picoseconds. This lifetime seems to eliminate propagation of amide-I excitation as
an intermediate step in energy transfer. Most chemical processes in enzyme systems
Involve conformational changes which proceed on relatively leisurely timescales-
microseconds or longer.

Davydov (8) has proposed a potential resolution of this disparity. He
suggests that the nonlinear character of the interatomic forces can stabilize the
amide-I excitations. According to this model, propagation of an amide-I excitation
is analogous to an exciton in a one dimensional solid. Excitons are coupled to
longitudinal sound waves in this system. This coupling of phonon and exciton fields
produces a dynamically stable excitation which propagates as a solitary wave. In
essence, the phonons provide a potential well that prevents exciton dispersion.
This balance between dispersion and wave steepening is familiar to students of
solitonic phenomena. In the continuum approximation, the dynamics of the solitary
wave are described by the nonlinear Schroedinger equation, which has solitonic
solutions. Davydov's analysis, based on the continuum approximation, demonstrates
that this mechanism could stabilize molecular excitons over periods of milliseconds

or longer (Davydov, 16a).

Davydov, Eremko and Sergienko (22) derived a phonon-exciton model which more
accurately represents the three dimensional arrangement of hydrogen-bonded chains
along the protein. Extensive numerical calculations based on this model confirm
that Davydov's continuum approximation is qualitatively correct for alpha helical
chains containing several hundred peptide residues. All models exhibit solitary
waves, which form at some threshold value for the coupling between excitons and
phonons. Further, the solitary waves are very stable and closely resemble solitons.

There are several Issues which need to be resolved before Davydov's model can
be rigorously applied to proteins in a living cell. These issues fall into four
categories. The first issue is the range of chemical or dynamical phenomena to
which the Davydov model can be applied legitimately. The second issue is whether a
model related to the Davydov model may be useful for structurally complex proteins.
The third issue is the relevance of the parameters used in previous modeling
efforts. The strength of the exciton-phonon coupling is particularly significant.
The fourth issue is the behavior of the model at temperatures commonly found In
living organisms.

Davydov originally proposed his model to account for muscle contraction
(Davydov, (8)). Because muscle contraction is thought to involve a conformational
change in a long-chain protein, we must determine whether the Davydov model allows
for a substantial portion of the excitonic energy to be transferred to phonons or
large-scale nuclear motions. Unfortunately, numerical calculations show that only a
small portion of the total energy resides in the phonons associated with the
solitary wave (Scott, (18)). Even though the Davydov model closes the gap In
timescales between dispersion of amide-I excitation and conformational changes in
proteins, the gap in energy remains quite wide. Because energy transfer from an
exciton mode to a highly excited phonon mode involves many quanta, the probability
of energy transfer from an exciton mode to a highly excited phonon mode remains
quite small (Ovchinnikov and Erikhman, (23)). Nevertheless, the Davydov model
remains a reasonable candidate for the transfer of bond energy.

The necessity of application of the Davydov model to a wide range of protein
structures arises because only a small fraction of the proteins in living systems
exist as long alpha-helical chains. More general models of excitonic propagation
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are necessary for the highly folded forms which are found in enzymes,
microfilaments, and chemical receptors. Lomdahl (19) has proposed one such model.
This model reduces to the Davydov model for short alpha helical segments.

The dynamics of the Davydov model are very sensitive to the effective force
represented by the phonon-exciton coupling. Previous numerical studies have taken
the value for the formamide dimer calculated by Kuprievich and Kudritskaya (24) as
representative. This value was obtained from an ab-initi self-consistent field
computation. The authors did not report on the details, which is unfortunate
because such calculations are quite sensitive to choice of the equilibrium geometry,
basis sets, or configuration interaction level. Our calculations indicate the value
reported by Kuprievich and Kudritskaya may underestimate the true value by as much
as a factor of two. We conclude that an accurate assignment of the coupling
constant remains to be established (See part III, below).

Another related problem arises in the extrapolation of experimental results
obtained with hydrogen-bonded molecular crystals, such as acetanilide (Carerl, At
Al , 25)) to support the Davydov model for proteins. The Davydov model includes
only exciton-phonon coupling terms which are linear in the phonons. Many of the
models of propagation of excitons in molecular crystals include coupling terms which
are quadratic. These terms are necessary to account for phonon frequency changes
which may be present in addition to changes in the equilibrium positions of the
molecules (Munn and Silbey, (26)). Spectrographic results obtained at cryogenic
temperatures (Johnston, (7,a,b)), indicate that the phonon frequency in acetanilide
is shifted by a change in the position of the proton in the hydrogen bonds of
crystalline acetanilide.

The thermalization problem has been addressed by Davydov (Davydov, (27)). By
using a density matrix approach, he has been able to show that the effective phonon-
exciton coupling constant is decreased by the presence of thermal phonons (Davydov,
27, 28). The magnitude of this effect remains to be computed. In fact, there is no
conclusive evidence, either theoretical or experimental, which would indicate
whether Davydov solitons exist at physiological temperatures. Our results indicate
that thermal effects may prevent the formation of Davydov solitons In yv.

B. THEORETICAL DERIVATION OF THE MODEL

Davydov's original model (Davydov, (8)) is a chain of N molecules along the z-
axis. The equilibrium positions are given by:

zo Z nR + un (1)

where R is the equilibrium distance between molecules and u is the displacement of
the nth molecule from equilibrium. The Hamiltonian operator for excitons (amide-I
bond excitations in the alpha helix) may be written:

H &zP PJ(P+ P + P P) (2)
ex n n .n+ln nnln

In this formula & is the molecular excitation energy and 3 Is the energy of
resonant interaction of neighboring molecules. These quantities may be described in
terms of a two-level model of the amide-I bond. (Fedyanin and Yakushevich,
(29*apb)). In this representation the states of the bond are denoted 0 and f. The
excitation energy of an isolated molecule is written as .
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Then:

L = tc+2D; D = <fO Vn,n+1 Ifo> - <001 Vn,+1 oo>

J M <Of]vn,n+ IfO >

We may also write:

) (d) (S)

where d is the dipole moment of the molecules. The operators Pn and P are the
annhilation and creation operators satisfying the Paull commutation re ations:

[P n'4~ I (1-2p P )
n n rim n n

rF = 0 (5)

Pn 2 = 0.

The phonon Hamiltonian has the form

H = 1 2 + U U -l 2 (6)
TPh f. n-

where Pn Is the momentum conjugate to the displacement un:

[Un' Pm I = i- 9 M. (7)

If the mass of the molecule is M then

w = Mv1s
2 = (Mv1C2 )/(Ro2  (8)

where w is the elastic coupling constant of the chain and vis the sound velocity.
The dispersion relation for phonons is given by

= =2v st n(qRo/ 2)! (9)

where q Is the wave vector and Al is the phonon frequency. The interaction of
excitons with phonons is given by

Hint nf n(Unl - Un l) (10)

where I Is the exciton-phonon coupling parameter. The total Hamiltonian for the
model is

L HSol =Hex +HP h +Hnt (11)
A particular solution for the time-dependent Schroedinger equation associated with
HsO1 Is given by the following wave function:

ITs(t)> - EC(t) expo(t))PIO> (12)
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In this expression C., t) is the probability amplitude of an exciton occupying rits
n at time t. Conservation of energy Implies the normalization condition

EIC n(t)l 231. (13)
n

The operator

G(t) = i4zl (O~pn - r nM (14)
n

is derived from a coherent state representation for the phonons. This follows frour.
the relations:

u 1' 2MNL ) (bq + b+ ) exp (incj)

pn = -ir(hf M/2N)2 (b b +~ ) exp (ing) .(5

qL q C -q

Substitution of these identities into the expression for 0r(t) gives an expression
of the form

exp[ /V (-Z (t)bq + Z*(t)b'): (16)

where

z =('2N )2, exp (inc) + (7

ic M/2N) : 4 exp (ing)
qr

The properties of the coherent state representation imply that the functions
Tn(t) and Ak(t) represent the average momentum and displacement respectively
of the nth moi'ecule.

Explicit expressions for the functions P n(t)D n0) and Cn (t) can be derived
via Hamilton's canonical equations applied to the energy functional. The energy
functional is defined as follows:

F = <So'= , 5S(tH!' S5(t)> (8

We may calculate F from the definitions:

F a WrC (01 2 _ Jr[C* M(tc (t) + C 1 (t)"*()
n nnn n n n

+ (vrr (t) + W:[B It) - (02

+ XZICn(t )I 2 Ee ~~) -l~ (19)
n ~ 1 t

The canonical Hamilton's equations
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yield the identify

/-M (21)
ctR 1n+l~t ni(t) -

2 6n(t)) +

(4)t!Cn+1(t) 12 _ Cn1'(t)I 2

If we write the phonon energy

2M n~!~(t) + W..fn(t) - 6 2-~) (22)
n ~ Ynnit

then Schroedinger's equation implies

-;C*t)

i{I + W>. tn~1 (t) -En-l W) Cn(t) -

Jfnl~ * C (t)l

Equations (21) and (23) describe the dynamics of a single chain.

The equations for a single chain may be generalized to the case of three
interacting chains as in a protein alpha helix. In this model, resonance
Interactions may occur along the protein helix. Adding these interactions to the
model yields a system of coupled equations in which the dynamic variables a-e
indexed by spine number as well as position along each hydrogen-bonded spine.

Our calculations are based on a coupled system of ordinary differential
equations, obtained as outlined in the previous section. Except for choice of
boundary conditions, our procedures are formally equivalent to those of Hyman,
McLaughlin and Scott (17). The ends of the helix are not mechanically constrained.
The complete model is given by the following system of equations

idC n,i =(1.41) C .U [do n / dt)2+ (6 E - 6 j 2

-0.058 (Cn-lj +i C ) 0.092( Cn~~ ni

+ 0.372 (10 lOX)[(l_6n) (6 n+l,i - 6 nj )C nj
N

+ (1 -! n) (kn.- a 1 ) .+(-tn)C
0 n ni n-s n,i (6 N n+l,i

(En~l,i - nf,j) + (1 - -Cmii( 6 n -10



d2 1 n.l) + )(24)

dt'2  N n+i n,i
d +2 (l_,n) 10nl~ )(4

+ (I-0) (En~ - n-li ) + 0.132(100)

,_,nl) (,_Enf) C 2 2
N  0 n + l i I - IC n -l+i2

+ 0 [ l i oi ;j N n-l,i +  In,i

+C* (C C +- C* )Cn,
n+li n+l,i n-l,i r+l,i ni "

We have normalized the time variable in these equations by setting t' (w/M)11 2 t.
The quantities S0 n, E n account for the boundary conditions at the n = 0 and n = N
ends of the helix respectively.

For the computations on short alpha helices, one quantum of amide-I excitation
energy was assumed to be located at the (0,1) position at the initiation of the
simulation. No provision was made for random motions due to thermal disorder durinc
the course of the computations. As in the work of Scott (18), the only free
parameters of the model are the number of peptide residues in the alpha helix and
the nonlinear coupling coefficient between excitp s and phongps. During the course
of the computations, we used values of 0.2 X 10-P 0.4 X 10j and 0.6 X 10-

Newtons for chain lengths of 18, 24, 27, 30, and 60 peptide residues.

For the calculations on the long alpha helices one, two and three quanta
initializations for the exciton energy were emploj6 d. Chain length was 8O
residues, coupling constant ranged from 0.5 X 10-  Newtons to 3.0 x 10 Newtons.
Calculations were carried out for the chain initially at rest and for phonon motion
simulating a temperature of 3000 Kelvin.

The resulting systems of differenlal equations were solved on a VAX 11/780
using double precision arithmetic. All integrations were performed using a third-
order Adams-Bashford-Moulton predictor-corrector method (Shampine and Gordon, (30)).
The code was set to maintain a relative error of 0.000001 at each time step during
the computation. Computation of the total probability of bond occupancy

served as an independent check of accuracy. In every computation P - 1 was
maintained at a value less than 0.00001.
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C. RESULTS

1. SHORT ALPHA HELICES

The total phonon energy was plotted as a function of time in order to examine
the energy exchange between excitons and phonons. Examination of the plots for the
fifteen combinations of chain length and coupling constants described above shows
that several time scales are present:

a) Short period oscillations (about 3-6 terahertz). These may be seen as
transient bursts which recur at periodic intervals.

b) The time interval between the appearance of the bursts is roughly
proportional to the chain length. The duration for each burst appears to be
independent of chain length. Figures 1-3 show plots of total phonon energy for
chain lenqj~s of 18, 27 and 36 residues. The high f5equency oscillations recur
at 3 X 10 s~qonds for chain length 18, 4.5 X 10 seconds for chain length.
27 and 6 X 10- '1 seconds for chain length 36.

c) Intermediate period fluctuations (500 gigahertz to 1 terahertz). The time
period for these fluctuations is proportional to chain length. Intermediate
period fluctuations are marked in Figures 2 and 3.

d) Long period fluctuations (100 gigahertz). Long period fluctuations are
seen for chain lengths of 27 and 36 residues. The clearest example may be seer
in 6gure 2 for a chain length of 27 residues, with coupling coefficient C.4 X
10-  Newtons. This oscillation persists for many cycles in the original
record from which the figure Is extracted.

Reordered according to frequency, the four separate timescales observed are:

a) Fast oscillations, 3 to 6 terahertz, occuring in bursts.

b) Intermediate fluctuations, 500 to 1000 gigahertz.

c) Recurrence of bursts, 200 to 500 gigahertz.

d) Long period fluctuations below 200 gigahertz.

Examination of the modules of the Fourier transform of the total phonon energy
confirms these observations. As the chain length is increased, the short period
oscillations become less significant and the long period oscillations more
significant. This trend is shown in Figures 4 and 5. The division between the
timescales Is seen most clearly for a chain length of 27 residues.

Phonon Spectra

Because phonon energy in an actual protein alpha helix is not easily subject to
direct experimental observation, we also computed the 1T(t) momentum expectation
function for selected residues along the chain. The modulus of the Fourier
transform of lT(t) gives the phonon spectrum, as may be seen from equation
(15) and the relation n(t) a <'s(t)pnJ Y (t)> (See Haaken, 31). In order to
analyze the collective modest we evaluated the sum of momenta for residues 1, 2 and
3 and the sum of momenta for residues [n/2), [n/2) - 1 and [n/2J - 1 and [n/21 - 2.

10
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Samples of the momenta plots are shown In Figure 6. We also computed the
modulus of the Fourier transform of each momentum plot. Plots of amplitude versus
frequency are shown in Figures 7, 8 and 9. Each of the plots consists of a series
of well-defined peaks. These peaks correspond to the normal modes of the
corresponding linear chains, and follow the same dispersion relation as given in
equation (9).

2. LONG ALPHA HELICES

Our finding on long alpha helices are summarized in Figures 10-17. (Each of
these plots required more than 10 hours of CPU time to produce.) As may be seen
from Figures 10, 11 and 12, representing evolution of probability of exciton
occupation subsequent to Initial excitations of one, two and three quanta of amide-:
excitation energy placed in the end peptide groups of chains at O°Kelvin, soliton
formation is a function of excitation level. Even in the case of two or three
quanta, there Is a significant probability that a fast-moving dispersive wave will
form. This may be seen by the sharply-defined ripples which form upon reflection of
the wave from the end of the chain. Another branch of the dispersion of
excitations, which Is indicated by waves similar to but moving more slowly than the
main solitary wave. Note that the coupling constant in this case Is 0.5 X 10"10

Newtons, a value which is reported by Scott (18) to be In the middle of the range of
coupling constants at which solitary waves form.

The second series of Figures, 13, 14 and 15, illustrate the effects of high
coupling constants. Figure 13, which represents evolution of excitoT probability in
a chain at 0 degrees Kelvin with a coupling coefficient of 1.5 x 10- Nt, shows that
a slowly-moving solitary wave may form at a lower excitation level in the case of
stronger coupling. Figure 14, also representi exciton evolution at 0 degrees
Kelvin but at a coupling constant of 3.0 x 10- Nt, shows that at very high levels
of excitation, a randomly-moving exciton forms. This is familiar to solid-state
physicists, in that phonons scattering from the exciton push It from site to site.
Figure 15, representing evolution subsequent to a two quanta excitation, shows
eventual trapping of the exciton at the end of the chain. A similar phenomenon has
been reported by Scott (18), with the major difference that the exciton did not
Initially leave the end of the chain.

Figures 16 and 17 illustrate the effects of thermalization. Figure 16, shows
the evolution subsequent to a two quanta excitation in a chain with thermal phonon
motion representing a temperature of 2380 Kelvin. The excitons disperse rapidly,
within 20 picoseconds. Figure 17 shows exciton evolution subsequent to three quanta
excitation in a chain with a phonon temperature of 300 degrees. Dispersion is also
rapid In this case.

D. DISCUSSION

1. SHORT ALPHA HELICES

We believe that the full range of phenomena observed during the course of our
modeling studies requires a more detailed analysis than the passage to the continuum
limit which is common to the literature on the Davydov model (Davydov, 8, 16, 27,
28, Scott, 18). A more accurate treatment should follow the spirit of Toda's
analysis of nonlinear lattices. (Toda, 32).
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Equations (24) may be simplified by neglecting coupling terms of small
magnitude. In the first equation, this includes the observation that only the
hydrogen bond on the (>O side of the peptide unit will influence the amide-I energy:

(25)
_ r,. = -Z.372(101 X P

dt Ox)[(n+l,i ni)Cni + (n n-li)Cn-li

- 0.O 58(Cn+l, i  + Cn_1, i )  + 0.092(C nJ+ 1  + C ni_)

d2En
d - - 32Ii010

dt , n,i n+l,i n-l,i + 0.132( 10  ) Cn+1,.i Cn- J

For the sake of simplicity, we have not included the end conditions in these
equations. These equations, which have several features In common with Flaschka's
equations for the Toda lattice (Flaschka, 33), may be treated as matrix equations.
To begin the analysis, note that to the first order the equations for the excitons
and phonons are uncoupled. The equations for the excitons may be written as a
system of linear autonomous equations:

i/dA/dt' = KA, (26)

with solution A a exp(iK)Ao .

The phonon displacement Is given in turn by an approximate equation:

id 2 o/dt' 2 - K6+ F, (27)

where6 0 is given by Bn + B _) and F is the nonlinear term given by the
excitons. The solution of t7) Vs given by the formula

(t) - fOtexpt-IK(t-2') IF(Tr )dJ (28)

This scheme may be continued self-consistently to improve the estimate of the
evolution of the exciton probability amplitude, given by equation (27), but equation
(28) accounts for the major features we have noted in the results section. For
example, the average lifetime of an exciton at a site of the chain is about 1.6
picoseconds. An exciton moving along the chain will excite 1.6 phonons most
strongly when it is near one of the ends of the chain. This Is the origin of bursts
in the phonon mode at about 6 THz. Other fluctuations are due to resonances between
phonons and the periodicity of the excitons. The long period observed for the chain
length of 27 residues is due to transfer between even and odd-numbered spines of the
alpha helix.

Because the calculated phonon spectra do not reflect the frequency shifts
observed in acetanilide crystals, we suggest that the Interaction term of the
Hamiltonian should include a quadratic term. Writing
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H' = **p p(um'it P Unl- n
+ P2 (29)

+ G:P +P (u - 2 29
n n n+1 -n-n

would yield a new expression for the energy functional

F' = F + GZlCl n n+l (t) - n-l 2 (30)
n

Equation (23) would be modified by addition of a term2G 2 [a
n+1 n+2(t)  n-l(t) . n-I

Similar modlfications may be made in the three-spine model.

2. LONG ALPHA HELICES

Mathematical analysis of the complicated dispersion observed for a single quantum
excitation is not yet complete. The reason for soliton formation in the case of two
and three quanta excitation may be seen from the fact that phonon formation goes as
the square of the number of excitons and thus the "feed-back" term in the exciton
evolution equation (25) increases as the cube of the number of excitons. The
qualitat 1e change in exciton dynamics observed when the coupling constant reaches
3.0 X10- Nt is also due to a qualitative change in the "feed-back" term. In this
case, the coefficient of the feedback term exceeds unity.
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III CALCULATION OF THE EXCITON-PHONON COUPLING CONSTANT

A. BACKGROUND

The calculation of the non-linear coupling between the vibrational excitons
localized in amide-I bonds and the phonons in the hydrogen-bonded "spines" of a
polypeptide alpha-helix is important to the understanding of the propagation of
undispersed amide-I vibrational excitons along these "spines". An undispersed
exciton which propagates through an interaction with phonons is also defined as a
Davydov soliton. In a numerical analysis of a polypeptide alpha-helix of finite
length, Scott showed that a Davydov soliton can be sustainedIthen the exciton-phonor;
coupling parameter exceeds a minimum magnitude of 0.35 X 10 Nt(18). The
question of the validity of this threshold is addressed In the calculations
described below.

According to Kuprievich and Kudritskaya, the exciton-phonon interaction
parameter consists of a resonance component (X2 ) and two non-resonance components

(X1+,X1-)(24). The X2 term can be obtained from the known magnitude of the
resonance interaction between the transistion dipoles associated with the amide-I
vibrat{gn in alpha-helical polypeptides (44). In this manner, Scott derived a value
of 10"  Newtons for X (18). The non-resonance components are best determined fror
a theoretical treatment of exciton-phonon coupling at the microscopic level. This
treatment involves the use of the quantum mechanical ab initio self-consistent field
(SCF) molecular orbital (MO) procedure. The exciton-phonon coupling terms and the
application of ab tnitio SCF MO theory to the calculation of these terms are
discussed in greater detail in Section III B. Section III C presents our
preliminary calculation of X1

+ and that of Kuprievich and Kudritskaya (24) for the
simplest hydrogen-bonded polypeptide - the formamide dimer. Conclusions are
presented in Section III D.

The Hamiltonian for the interaction of vibrational excitons with acoustical
phonons in a discrete chain of N molecular units forming a regular one-dimensional
lattice was derived by Kuprievich and Kudritskaya (24, 34), in a form differing
slightly than that reported by Davydov.

N + +
Hint = iWF=MPmP[Xi (um+ 1 - um)+X1° (um- um. 1 )) (32)

+ N (+ + 32
+ 2 =2Pmm-1+P -IPm)X2(um-um..1)

In this expression, P + and P are the creation and annihilation operators of
vibrational excitati on ;n the unimpUm is the displacement of this unit from its

equilibrium position, X1+ and X1 " are the parameters defining the non-resonance
interaction of a unit with its neighbors, and X2 is the parameter defining the
resonance interaction for two neighborinv units in a chain. Note that the terms in
the first sum with X1 " at m=l and with X 1 at m-N should be omitted, because both

terminal molecular units have only one neighbor.
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The explicit formulations of X , X ", and X2 for a dimeric group consisting ofpeptide groups m and m+1 are as follows 124, 34):

X1 = (/2w ) (Emoe+l/ );n2)/JRm+l (33)

= (6/2w) ) (; Em(3m+5/)12)/6Rm,m+l

where w is the intramolecular amide-I vibrational frequencyp, is the distance
or hydrogen-bond length between groups m and m+2 (See Figure 1a), . m+l is the
interaction energy (or total energy In the Born-Oppenheimer approximation 35)) of
groups m and m+l, and Gi is the normal mode coordinate for the amide-I vibrations in
groups 1=m and m+l. Since the second derivatives of the total energy of the dimer
with respect to Its vibrational normal coordinates are proportional to the harmonic
force constants for these modes, the coupling parameters in Eqs. (33) - (35) can be
viewed as the first derivatives of the harmonic force constants for the amide-I
vibrations in the dimer with respect to the intermolecular distance R F+1 Thus,
the acoustical phonons of the alpha-helix which are defined principal9 ; by hanges
in Rm ,,,+ (i.e., changes in the pitch of the alpha-helix (24, 34)) are coupled to
the amide-I vibrational excitons.

As stated in the Introduction, a value of 10-12 Nt for X2 can be derived from
the known magnitude of the resonance interaction between the amide-I vibrational
transition dipoles (18). Kuprievich and Kudritskaya argue that X1 - is negligible

with respect to X (24). The principal reason is that the dominant contribution to
the amide-I vibra ional normal mode in a peptide group is the C-O bond stretching
motion (24, 36, 37). As a result, the amide-I vibration of group m will be much
more perturbed than that of group m+1 by changes In R., m+I. This observation is
clearly seen in Figure 18a. The major objective of our analysis of the exciton-
phonon coupling in polypeptides will therefore be the calculation of X1 

.

B. QUANTUM-MECHANICAL CALCULATION OF THE NON-RESONANCE EXCITON-PHONON INTERACTION'
PARAMETER X1 .

The calculation of the interaction energy of the two peptide groups (Em m.1)
as a function of thi intra- and inter-molecular coordinates is fundamental to th'e
determination of X1 . In the Born-Oppenheimer or adiabatic approximation (35), the
interaction energy-is equivalent to the total energy (E) for the system, which is
calculable using quantum mechanical a..iniQ self-consistent field (SCF) molecular
orbital (MO) procedures. The details of these procedures and their application to
the study of the electronic structure of atoms and molecules are wel1-covered by
Schaefer In his book (38) and the references therein.

The mapping of the E surface for a dipeptide system as a function of Its intra-
and inter-molecular coordinates is a formidable task. However, as outlined by
Kuprievich and Kudritskaya (24), one can obtain a crude estimate of X1 by the
following procedure. 1) Investigate the simplest system that contains two peptide
groups connected by a hydrogen bond, i.e. the formamide dimer shown in Figure 18b.
2) Determine an equilibrium geometry for the dimer. 3) Approximate the amide-I
vibrational normal mode as only a C-0 bond stretching motion. As a result, the am
in Eq (33) becomes frF/Tw (24), where ?is the change in (-O bond length away from
its equilibrium value (positive/negative Y signifies an expansion/contraction of the
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Figure 18 (a). Structure of a chain of hydrogen-bonded peptide groups.

Unspecified molecular fragments are designated R In the
figure. Note that the Integer m represents one peptide group.
The hydrogen bond length between groups m and *+I Is indicated
by Rm, 0e+"

Figure 18 (b). Structure of the foruimide dimer and numbering of the atoms
used in the calculations.

Figure 18 (c). Description of the vibrational normal mode in the formamide
monomer which contains the stretching motion of the CO bond.
This figure is taken from Ref 37, and the direction and length
of the arrows represent the activity of the given atoms in the
normal mode.
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C0O bond), K is the harmonic force constant for the C=O bond stretching motion, and
w is the amide-I frequency. Eq. (33) then takes the form

X1+  (w/2) )KI) mm. (36)

where K E/)j2. 4) Calcglate E at three different values of Y and estimate
K -)E/)f2 by 4(4E)/(df) . 5) Calculate K at different values of R. m+ and +
estimate K/ )R. _. by 6K/&R., .+. In summary, a crude detemination of X1
for a polypeptt'6 chain can be made By calculating the total energy of the formamide
dimer in different geometries and then taking the appropriate numerical derivatives.

Both Kuprievich and Kudritskaya's (24) and our ab .nA.Q SCF MO calculations of
the total energy of the formamide dimer were performed with the minimal atomic
orbital basis set composed of 36 Slater-type orbitals (STO), each being approximated
by 3 Gaussian functions (3G) (3g). It is stressed that the STO-3G basis set is good
only for qualitative analyses of the geometries of amide compounds (37, 38). For
example, an energy-minimized geometry of the formamide monomer calculated using the
STO-3G basis set was not In complete agreement with the experimentally determined
geometry for the molecule (37). The major differences were that the calculated
geometry was slightly non-planar, Xhi le the observed one was planar, and that the
calculated C-N bond length was 0.1A longer than the observed one (see Table I and
Ref. (37)). Although the STO-3G basis set has its limitations with regard to the
accurate study of molecular properties, SCF convergence was achieved for all 6 of
geometries of the formamide dimer, and the cost per calculation was about 12 minutes
of CPU time on the VAX 11/780. Thus, the STO-3G basis set allows one to make a
qualitative estimate of X, with the least amount of computational effort.

The specific differences betyeen Kuprievich and Kudritskaya's (24) and our
approach to the calculation of X, are the determination of an equilibrium geometry
for the dimer and the manner In which 5 was changed. The equilibrium geometry of
Kuprievich and Kudritskaya (24) was found as follows. The relative arrangement of
nuclei in each of the dimer molecules was assumed to be the same as observed in a
free formamide molecule (see Table I). The mutual orientation of the two molecules
was constrained so that the atoms C1=01---H4-N2 lay on a straight line (see Figure
18b). The equilibrium intermolecular istance was taken as that corresponding to
the minimum total energy along the C1=01-O-H4-N2 axis.

Our equilibrium geometry was derived from an energy minimization of the
complete geometry of the dimer. This calculation took approximately 10 hours of CPU
time and was accomplished utilizing energy gradient and optimization routines. The
only constraint on the geometry optimization was that the dimer had to be planar.
This constraint was implemented because the observed geometry of the formamide
monomer is planar (see Table I and Ref. (40)).

The change in f should correspond to the motion of the carbon and oxygen atoms
in the C1S01 bond stretching motion. Kuprievich and Kudritskaya (24) chose to move
only the-0 atom in increments of -0.02 Bohr, so that E was calculated at the points
-0.0, -0.02, and -0.04 Bohr. The reason for the choice of two negative values of

is that the observed C-O bond length of 1.243R (41) used as their equtltbrium value
is longer than the one cakllated using the STO-3G basis set (1.219R) (see Table ).
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We elected to move both the 01 and Ci atoms in increments of 0.01 ftohr, so that

E was calculated at F=0.O, 0.02, and 0.04 Bohr. Note that the molecular fragment
attached to the CI atom (atoms NI, H1 , H2 # and in Figure 18b) was also moved
rigidly with the i atom. Our motivation for movlng both the 0 and C, atoms was
that this motion is in better agreement with the amide-I vibrational normal mode for
the formamide monomer shown in Figure 18c.

C. RESULTS

Calculated and observed equilibrium internal coordinates and ground state
dipole moments for the formamide dimer and monomer are given in Tale 1. The
calculated ground electronic state properties used to determine X - for the
formamide dimer are presented in Table II. Table III lists Kuprievich and
Kudritskaya's (24) and our calculated values of X for different harmonic force
constants for the 0=0 bond stretch vibration in te formamide dimer and monomer.

Equil ibri um Geometry

No experimental data are available on the geometry of the formamide dimer showr
in Figure 18b. In order to estimate the accuracy of our energy-minimized geometry
of the formamide dimer calculated using the STO-3G basis set, we calculated an
energy-minimized geometry for the formamide monomer, on which there is experimental
data (40). As in the case of the dimer, the monomer was constrained to be planar
(designated STO-3G planar in Table 1). We see In Table I that, except for the
longer C1-N bond length, our calculated geometry does not differ significantly froc
the observes geometry given in the rightmost column of Table I, or from the geometry
calculated using the ajb nitijQ SCF MO procedure with the more elaborate 4-31G split
valence basis set (42). We conclude that our calculated equilibrium geometry for
the formamide dimer is reasonable with the exception of the C1-N, and 2-N2 bond
lengths. Most importantly, the calculated C1=O= bond length of 1.218 A in the
formamide monomer Is in very good agreement wiUt observed one at 1.219 + 0.012
(40).

The equilibrium geometry of the formamide dimer constructed by Kuprievich and
Kudritskaya (24) is given In the column headed by STO-3G + Obs. The internal
coordinates for the formamide molecules in the dimer were taken from the
experimental investigation of the formamide monomer by Kurland and Wilson in 1957
(41). Although there is a slight difference in the CI=O1 bond length, Kurland and
Wilson's (41) results agree with the more recent spec roscopic study by Hirota, p
al in 1974 (rightmost column in Table I) (40). The hydrogen bond length (ro....H4 )
calculated by Kuprievich and Kudritskaya (1.853 X) (24) and the present work (1.851

A) are essentially identical. However, we calculate the 01---H4-N2 bond angle to be

slightly bent at 1750 while Kuprievich and Kudritskaya (24) constrained it to be
180 . This difference should not be too significant, because the potential energy
curve associated with the bending of hydrogen bonds is very shallow (24).

The Nonresonance Exciton-Phonon Interaction Parameter, XI+

The calculation of X+ by Kuprievich and Kudritskaya (24) and the present work
can be followed by reading Table II from left to right. Note that R in Table II is
equivalent to Rm, ,I In the text. We see that the values of K calculated by
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Kuprievich and Kudrltskaya (34) (1518 Nt/m at AR=0.0 Bohr and 1428 Nt/m at
AR=0.66653 Bohr) are less than that of the present work (1585 Nt/m at6R=O.0 Bohr
and 1578 Nt/m at8R=0.66653 Bohr). Furthermore, the change in K with respect to the
change in R is calculated to be much greater by Kuprievich and Kudritskaya (-90
Nt/m) (24) than the present work (-7 Nt/m). In other words, Kuprievich and
Kudrltskaya (24) have calculated a greater perturbative effect of the motion of the
H4 atom (the acoustical phonon) upon the C =0 bond stretching vibration (the amide-
I exciton) than is determined by our computations. This result is summarized in
Table III which reveals the approximately one order of magnitude difference between
the nonresonance exciton-phonon coupliT? parameter calculated by Kuprievich and
Kudftskaya (24) (-2.65 to -3.64 x 10- Nt) and the present work (-0.20 to -0.27 x
10- Nt).

D. CONCLUSIONS

According to Scott (18) Davydov soliton formation in an alpha-helix Is possible
only when the magnitude of the nonreso Ince exciton-phonon interaction parameter
exceeds a threshold equal to 3.5 x 10-Nt. The numerical analysis of Kuprievich
and Kudrttskaya (24) shows that the magnitudeuof ×Xt can exceed such a threshold
(see Table III). This result would provide suppor of the existence of solitons in
polypeptide chains. However, our calculated magnitude of X + Is an order of
magnitude less than that derived by Scott (18), and It woull argue against the
existence of solttons in polypeptide chains.

+The dsagreement between Kuprievich and Kudritskaka's (24) calculated value for
X I and ours was disturbing, and so we recalculated X1  using the exact procedure
o* Re (24). We found that Kuprievich and Kudritskaya were in ejor. Instead of 3
x I - 1Nt, their calculated magnitude of X, should be 0.7 x 10 Nt. fithough 0.7
x 10 Nt is larger than our original calculated tpgnitude of 0.2 x 10 Nt, it
still is less than the minimum value of 3.5 x 10' Nt predicted by Scott (18) to
sustain a Davydov soliton. Thus, neither the STO-3G calculation in Ref. (24) nor
ours supports the existence of Davydov solitons In hydrogen-bonded polypeptide
chains.

A more sophisticated .ab ti. - SCF-T calculation employing the 4-31G basis
set (42) yielded a magnitude of 1.3 x 10- Nt for X (see Appendix I). This
magnitude is less than Scott's minimum value (18), 1ut it has Increased relative to
the one calculated using the STO-3G basis set. Therefore, as one improves the
sophistication of the ainiti -SCF-MO calculation, one would expect X +to
to increase. It is necessary to improve the sophistication of the A- ZJflI.Q - SCF-
MO procedure, because of the complexity of the hydrogen bond Involved in the
exciton-phonon interaction (see Appendix ). As a result, the question concerning
the presence of Davydov solitons in alpha-helical polypeptides still can not be
answered definitively on the basis of the quantum mechanical calculations performed
to date.
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TABLE 1. (cont)

a) The structure of the formamide dimer and the numbering of the atoms is given in

Figure 18b. The formamtde monomer is defined by the molecular fragment
composed of atoms 01, Ci, Nip Hj4 H2 , and K3 in Figure 18b.

b) rx = bond length between atoms x and y; Lx -Sangle between the x-y and y-z
bo ds; I& I F magnitude of the ground statel Ipole moment; '( &, r,- j,)-
angle between the C1 -N, bond vector and the ground state dipole moment vector.
Note that na 3 not available.

C) This work. The geometry of the formamide dimer was determined by minimizing
the energy of the molecular system with respect to the atomic coordinates. The
energy was calculated using the ab intit self-consistent field (SCF) molecular
orbital (MO) method with the STO-3G minimal atomic orbital basis set. Planar
means that all the atoms in the dimer were constrained to remain in one plane
during the optimization calculation.

d) Ref. 24. The geometry of the formamide dimer was determined in two parts: (1)
the internal coordinates of the two formamide monomer units were taken to be
identical and are the observed values for the formamide monomer given in Ref.
41; (2) the energy of the dimer was minimized with respect to the r(Ol...H 4 )
distance, where the Cl, 01, H4 , and N2 atoms were constrained to be on one
line. This energy was ca tcuated using the ab initi. SCF MO method with the
STO-3G basis set.

e) This work. See c) with the exception that dimer is replaced by monomer.

f) Ref. 37. The geometry of the formamide monomer was determined by minimizing
the energy of the molecule with respect to the atomic coordinates. The energy
was calculated using the ab tn.tio SCF MO method with the STO-3G basis set.
The monomer was not constrained to remain planar In this calculation, and it
was found that the minimum energy geometry was not planar with the 01-C1 -N1 -H1

and 01-C1-N1-H2 dihedral angles equal to 146.80 and 22.80° respectively.

g) Ref. 37. The geometry of the formamide monomer was determined by minimizing
the energy of the molecule with respect to the atomic coordinates. The energy
was calculated using the ab Intii SCF MO method with the 4-31G split-valence
basis set. The monomer was calculated to be planar.

h) Ref. 40. A microwave spectrum of the formamide monomer in the gaseous state.
The monomer was determined to be planar.
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TABLE II. (cont)

a) The structure of the formamide dimer is given in Figure 18b. The non-resonance
exciton-phonon coupling parameter Is defined in h) of Table III.

b) The change in hydrogen bond length (r(O1-H4 ) in Figure 18b) with respect to its
equilibrium value. A positive AR reflects an increase In r(O1-H4 ).

C) The magnitude of the change in the carbonyl bond length (r(C =O1) in Figure
18b) with respect to its equilibrium value. Note that a positive/negative
reflects an increase/decrease of r(Cl=0 1 ).

d) The total ground electronic state energy of the dimer.

e) The present work is represented by P. The abIniti self-consistent field
(SCF) molecular orbital (MO) method with the STO-3G minimal atomic-orbital
basis set was used to calculate the total energy of the dimer as a function of
,R and f . Note the following: (1) was positive, as It was increased in
increments of 0.02; (2) 5 was increased by moving the 01 atom and the molecular
fragment composed of the C1, N1 , Hi, H29 and K3 atoms (see text).

f) The work of Kuprievich and Kudritskaya in Ref. 24 is represented by KK. The At
iniji SCF MO method with the STO-3G basis set was used to calculate the total
energy of the dimer as a function of 6R and I . Note the following: (1) S
was negative, as It was decreased in Increments of 0.02; (2) f was decreased by
moving nnjy the 01 atom (see text); (3) the total eneggy of the dimer decreases
as f decreases, because t~e initial r(C1 MO1) = 1.243 A is greater than the
optimal r(C =O1 ) = 1.219 A calculated using the ab-InXJi SCF MO method with
the STO-3G Basis set (see text and Table I).

g) The change in total energy associated with the change In Af

h) The change in AE associated with t .

I) The estimate of the diagonal force constant for the stretching of the C1=01

bond. K =*?E/f 2 !- A4(aE)/ ( )2.

J) The third derivative of the total energy of the dimer which is the crucial
component of the non-resonance exciton-phonon coupling parameter (see text and
Table III).

4.
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TABLE III. Calculated values of the non-resonance exciton-phonon
coupling parameter for different diagogal force conslants. for
the C a 0 bond in the formamide dimera and monomera

K(Nt/m) 15) X1
1(Nt x 10M) fir

Pi) KKJ)

1150 -0.27 -3.64

(monomer, Ref.40c

1380 -0.22 -3.03

(monomer, Ref. 37)d)

1540 -0.20 -2.72

(monomer, Ref. 24)e)

1473 -0.21 -2.84

(dimer, Ref. 2)f

1581 -0.20 -2.65

(dimer, This work)g)
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TABLE III. (cont)

a) The structure of the formamide dimer Is given in Figure 18b. The formamide
monomer is defined by the molecular fragment composed of atoms 01, C1, N1, H1,
H2, and H3 in Figure 18b.

b) The diagonal force constant for the stretching of the C1-01 bond.

c) Derived from spectroscopic data.

d) Calculated using the akI niti self-consistent field (SCF) molecular orbital
(MO) method with the 4-31G split-valence basis set.

e)-g) Calculated using the ab-inJit SCF MO method with the STO-3G basis set.

h) The non-resonance exciton-phonon coupling parameter.

Xl+  t -K 3 where $w = the experimental mean frequency of the
amide-I vibration (1660 cm- 1 - 3.297 x 1O'20j),
K as defined in b), and K/AR as defined in I) of Table 11.

I) The value of X1+ determined using tOK/AR calculated in the present work.

J) The value of Xl+ determined using AK/AR calculated by Kuprievich and
Kudritskaya In Ref. 24.
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APPENnIX..L The calculation of the nonlinear coupling constant (X1+), using an
aj-iQ -SCF-MO procedure with the 4-31G basis set.

The calculation of X1
+ using an ab-Jnjti -SCF-MO formalism with the 4-31G

split valence basis set is a great improvement over earlier calculations employing
the STO-3G basis set (see Section III and Ref. 1-1). However, before discussing the
results of the 4-31G calculation, there is one findlig to be noted concerning the
STO-3G calculations; the magnitude of X *+ 3 x 10 Nt calculated by Kuprievich and

Kudritskaya (I-1) is too high. We recalculated X1+ by following exactly the
procedure outlinedAy Kuprievich and Kudritskaya 11-1), and obtained a magnitude
equal to 0.7 x 10 Nt. Although Kuprievich and Kudritskaya (I-1) mention that they
had SCF convergence problems (we had none), the errors in their calculation of Xi

are not clear to us. In conclusion, neilher the STO-3G calculation in Ref. I-1 no,ours (Section III) yields a value ofIX Iwhich exceeds the threshold of 3.5 x 10-

Nt predicted by Scott (1-2). This result will be discussed in detail below.

Ab-inlti -SCF-MO calculations of molecular properties employing the STO-3G
basis set are crude. This fact is particularly true when treating interactions like
X,+ , which are associated with hydrogen bonding. The starting point for the
treatment of hydrogen-bonded systems is to use the 4-31G basis set. It is stressed
that this basis set is only the starting point because the van der Waals forces
which are important in hydrogen bonding are not being described reasonably until one
utilizes second and third order M l1er-Plesset perturbation theory in conjunction
with polarized basis sets of the 6-311G ** type (1-3).

The ab-initj. -SCF-MO calculation of X1
+ using the 4-31G basis set followed the

same procedure outlined for the calculation employing the STO-3G basis set: (1) use
a formamide dimer as the simplest model of the polypeptide chain, (2) calculate an
equilibrium geometry of the dimer, (3) calculate K or K~ as a function of Rmlm + 1
or RO  However, unlike the ST -3G calculation whichetermined KC.O at two
value2 ' RO...H a 0.00 and 0.35 A, the 4-31G calculation computed K- 0 at seven

values of RO ... = - ± 0.05, ± 0.02, + 0.01, and 0.00 X.

Calculated (STO-3G and 4-31G) and observed equilibrium geometries of the
formamide monomer are shown in the top part of Figure I-1. Note that the calculated
geometries were constrained to be planar, and the observed one was found to be
planar. It is clear that the 4-31G calculated geometry matches up better with the
observed one than does the STO-3G calculated geometry. This observation is
particularly true for the C1-N1 bond length. The term II is the magnitude of the
dipole moment, and 0(,p , rC1.N1 ) ! S is the angle between the dipole moment vector

and C1-N1 bond vector.

Calculated (STO-3G and 4-31G) equilibrium geometries of the formamide dimer are
shown in the bottom half of Figure 1-1. No observed equilibrium geometry of the
dimer is available in this configuration. Similar to that for the monomer, the
calculated geometry of the dimer was constrained to be planar. The major points to
be noted concerning the calculated dimer geometries are (1) the RC1 and RH-N 2 in

the dimer with respect to RC1.0 1 and R 1.N1 in the monomer are greater for the 4-31G
calculation (+ 0.005 and + 0.007 , respectively) than those for the STO-3G
calculation (+ 0.001 and + 0.003 A, respectively). Clearly, the formamide monomer
is calculated In the 4-31G basis set to be more affected by hydrogen bonding than In
the STO-3G basis set.

46

dt)



I

. I x " z .

A.s.

cacuaedusn th ab-i i -SFMOpoedr it h SO3

mooe determine by /.t a .A 16 s loson

/& x '",",,

'_ n. 500.... .. . , /"
\,. o. /o-. ,= \ ..S,,

Figuret that Euibi' geis e mantde f the moloelr ndil oment

*.n ' 4-1 bass s. The,'A obevdgoer-ftefmm~

mon o : deZte5 mined ; byH go~a t • *CIO l (-) saso ho .

Note th * .I ste giueo themleua *pemoet

and 0 0K, r

47C~

Figure 1 n.Equil .,briu geometis ofthe foruae be mnoer dil doment

vector and IscN theo n le btwettediolromn

'[ -



Calculated (STO-3G and 4-31G) electronic charge distributions for the
calculated equilibrium geometries of the formamide monomer are shown in the left-
half of Figure 1-2. The polarization of charges across all bonds increases as one
goes from the STO-3G to the 4-31G basis set. It is also shown that the charge
distribution for the formamide monomer calculated using the even more elaborate 6-
31G basis set (1-4) is not too different from the 4-31G calculated charge
distribution. This statement is supported further by noting that I& 1(4-31G) =
4.471D Is closer in value to ItM(observed) = 3.71 ± 0.06D than Is I (STO-3G) -
2.641D. Both e (4-31G) a 41.30 and e (STO-3G) a 39.30 are in near-agreement with 8
(observed) - 39.60.

Calculated (STO-3G and 4-31G) electronic charge distributions for the
calculated equilibrium geometries of the formamide dimer are shown in the right-half
of Figure 1-2. As in the case of the formamide monomer, the polarization of charges
across all bonds increases as one goes from the STO-3G to the 4-31G basis set. This
observation is reflected in |&I (4-31G) = 10.331D being greater than IM, I (STO-
3G) - 6.280D. The greater polarization of charge across the hydrogen bond
calculated using the 4-31G basis set implies a greater intermolecular interaction
which should result in a greater value of 1 ".

Figure 1-3 presents the plot of KCM ,I H calculated with the 4-31G basis

set. The linear regression fit of the points yl(led an equation, KC-0 = 1463.1 -

97.5 RO. , 0 with an r2 . 0.993. The slope of the plot yields a value of X1=
-0.13 x Nt. The terms X1

+ , Ke (force constant for the calculated equilibrium
geometry at Rn  H = 1.922 9), fiw Tamide-I frequency), ESCF (total energy of the
dimer), and A tnding energy of the dimer or hydrogen bond stabilization energy)
calculated for the formamide dimer employing the 4-31G and STO-3G basis sets are
given In Table 1-1.

Although IX1+I (4-31G) has increased relative to IxI+ (STO-3G), it is still

less than the minimum value of O.3b 1o-ONt predicted by Scott (1-2) to sustain a
Davydov soliton in alpha-helical polypeptides. However, since IXI+i is proportional
to the hydrogen bond binding energy (Ain Table I-I), the stronger the hydrogen bond,
the greater the value of IX1 1. There is no doubt that the hydrogen bond for the
formamide dimer Is stronger than what we have calculated using the 4-31G basis set,
because we have neglected the van der Waals forces. Furthermore, the strength of
hydrogen bonds between molecular units In a hydrogen-bonded polymer chain can be
double that of the hydrogen bond In a dimer (1-5). Therefore, by including van der
Waals forces in our theoretical formalism and by increasing the number of formaml e
monomer units In our model of the polypeptide, we would expect the calculated IxI I
to increase to a value perhaps greater than 0.35 x 10oNt. From the perspective of
the quantum mechanical calculation of X1

1, the question of the presence of Davydov
solitons in alpha-helical polypeptdes is sti 11 not resolved.
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TABLE I-I

Calculated values of the exciton-phonon coupling term (X1 
+ ) and related

parameters for the formamide dimer.

PARAMETER PRESENT WORK PRESENT WORK SCOTT, 19 82b)

4-31G STO-3G
z + U Oioi Nt) - .13 -0 7 .1

K=eq(Nt/m) 127 5c) 15 53c) na

"Sw(cm"1) 1660 1660 na

ESCF (au) -337.376457664 -333.383404267 na

,A ajev) -0.36168 -0.18984 na

(a) a = ESCF (dimer) -2ESCF (monomer); na - not applicable

(b) A.C. Scott, Phys. Rev. A 2k , 578 (1982)

(c) K eq (4-31G, monomer) - 1285 Nt/m;

Kceq(STO-3G, monomer) = 1586 Nt/m.
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